在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
互动学习和决策的基本挑战,从强盗问题到加固学习,是提供了实现的采样效率,自适应学习算法,实现了近乎最佳的遗憾。这个问题类似于最佳(监督)统计学习的经典问题,其中有众所周知的复杂性措施(例如,VC维度和Rademacher复杂性),用于控制学习的统计复杂性。然而,由于问题的适应性,表征交互式学习的统计复杂性基本上更具挑战性。这项工作的主要结果提供了复杂性措施,决策系数,被证明是必要的,并且足以用于采样有效的互动学习。特别是,我们提供:1。对于任何交互式决策问题的最佳遗憾的下限,将决策估计系数作为基本限制建立。 2.统一算法设计原理,估算到决策(E2D),它将任何用于监督估算的算法转换为决策的在线算法。 E2D遗憾的是符合我们下限的遗憾,从而实现了最佳的样本高效学习,其特征在于决策估计系数。一起参加,这些结果构成了互动决策的可读性理论。当应用于增强学习设置时,决策估计系数基本上恢复所有现有的硬度结果和下限。更广泛地,该方法可以被视为统计估算的经典LE CAM理论的决策理论;它还统一了许多现有方法 - 贝叶斯和频繁的方法。
translated by 谷歌翻译
我们考虑了上下文匪徒的问题,其中Action是一个地面集的子集,均值奖励由属于$ \ Mathcal {F} $的未知单调子模块函数建模。我们允许将时变的Matroid约束放置在可行的集合上。假设使用后悔$ \ mathsf {reg}(\ mathcal {f})$访问Oracle,我们的算法根据逆间隙加权策略有效地随机随机化估计函数的局部最佳函数。我们展示了这种过程的累积遗憾了时间,以时间为单位$ N $尺度作为$ o(\ sqrt {n \ mathsf {reg}(\ mathcal {f})),乘以乘法因子$ 1/2 $的基准。另一方面,使用(filmus和ward 2014)的技术,我们展示了与当地随机化的$ \ epsilon $ -greedy程序率为$ o(n ^ {2/3} \ mathsf {reg}(\mathcal {f})^ {1/3})$较强大的$(1-e ^ { - 1})$基准。
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译
Deep learning-based 3D human pose estimation performs best when trained on large amounts of labeled data, making combined learning from many datasets an important research direction. One obstacle to this endeavor are the different skeleton formats provided by different datasets, i.e., they do not label the same set of anatomical landmarks. There is little prior research on how to best supervise one model with such discrepant labels. We show that simply using separate output heads for different skeletons results in inconsistent depth estimates and insufficient information sharing across skeletons. As a remedy, we propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks. The discovered latent 3D points capture the redundancy among skeletons, enabling enhanced information sharing when used for consistency regularization. Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model, which outperforms prior work on a range of benchmarks, including the challenging 3D Poses in the Wild (3DPW) dataset. Our code and models are available for research purposes.
translated by 谷歌翻译
This article concerns Bayesian inference using deep linear networks with output dimension one. In the interpolating (zero noise) regime we show that with Gaussian weight priors and MSE negative log-likelihood loss both the predictive posterior and the Bayesian model evidence can be written in closed form in terms of a class of meromorphic special functions called Meijer-G functions. These results are non-asymptotic and hold for any training dataset, network depth, and hidden layer widths, giving exact solutions to Bayesian interpolation using a deep Gaussian process with a Euclidean covariance at each layer. Through novel asymptotic expansions of Meijer-G functions, a rich new picture of the role of depth emerges. Specifically, we find that the posteriors in deep linear networks with data-independent priors are the same as in shallow networks with evidence maximizing data-dependent priors. In this sense, deep linear networks make provably optimal predictions. We also prove that, starting from data-agnostic priors, Bayesian model evidence in wide networks is only maximized at infinite depth. This gives a principled reason to prefer deeper networks (at least in the linear case). Finally, our results show that with data-agnostic priors a novel notion of effective depth given by \[\#\text{hidden layers}\times\frac{\#\text{training data}}{\text{network width}}\] determines the Bayesian posterior in wide linear networks, giving rigorous new scaling laws for generalization error.
translated by 谷歌翻译
In this paper we study the smooth strongly convex minimization problem $\min_{x}\min_y f(x,y)$. The existing optimal first-order methods require $\mathcal{O}(\sqrt{\max\{\kappa_x,\kappa_y\}} \log 1/\epsilon)$ of computations of both $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$, where $\kappa_x$ and $\kappa_y$ are condition numbers with respect to variable blocks $x$ and $y$. We propose a new algorithm that only requires $\mathcal{O}(\sqrt{\kappa_x} \log 1/\epsilon)$ of computations of $\nabla_x f(x,y)$ and $\mathcal{O}(\sqrt{\kappa_y} \log 1/\epsilon)$ computations of $\nabla_y f(x,y)$. In some applications $\kappa_x \gg \kappa_y$, and computation of $\nabla_y f(x,y)$ is significantly cheaper than computation of $\nabla_x f(x,y)$. In this case, our algorithm substantially outperforms the existing state-of-the-art methods.
translated by 谷歌翻译
This paper presents a solution to the GenChal 2022 shared task dedicated to feedback comment generation for writing learning. In terms of this task given a text with an error and a span of the error, a system generates an explanatory note that helps the writer (language learner) to improve their writing skills. Our solution is based on fine-tuning the T5 model on the initial dataset augmented according to syntactical dependencies of the words located within indicated error span. The solution of our team "nigula" obtained second place according to manual evaluation by the organizers.
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译